Thermochimica Acta, 24 (1978) 178-181
© Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

Note

Non-isothermal kinetics with non-linear temperature-programme (i)

VY. MARCU axp E. SEGAL

Polytechnical Institute of Bucharest, Institute of Chemistry, Department of Physical Chemistry and
Electrochemical Technology, Bd. Republicii 13, Bucharest { Roumania)

(Received 16 June 1977)

In the field of non-isothermal kinetics, there is an interesting use of non-linear
heating programmes' ~*. These have been established in order to solve exactly the
temperature integral, as well as to minimize the deviation of the sample temperature
from the programmed one. This paper aims to establish a simple equation, charac-
teristic for non-isothermal kinetics. From this equation, one could get difierent non-
linear programmes of heating, which solve exactly the temperature integral.

GENERALITIES

Heterogeneous reaction kinetics supposed to follow the rate equation:

— = k(1 — a)° @)

where x = the degree of conversion; ¢ = the time; & = the rate constant; n = the
reaction order.

In eqn (1), we shall substitute the Arrhenius equation:
k — Ze EIRT )
where: Z = the preexponential factor; £ = the activation energy; 7 = the temperature
(K); R = 1987 cal mol™! K~ L.

Subsequently, eqn (1) becomes:

dx

—  =Ze H*T s 1
a— (1)
Introducing the heating rate:
aT -
= 3r (€)

into egn (1) one obtains:
= 2 e ERT4T I
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The integration of eqn (17) leads to:

T
Foy= [ -z f f(T) e ERT 4T a™
. (1 —2F A

where: f(T) = 1/B

If f(T) = const, the programme of heating is a linear one and it is impossible
to solve exactly the temperature integral.

Assuming a non-linear programme of heating, we shall try for the integrai:

T
[raye=mrar @
o
exponential solutions, suggested by the shape of the function that has to be integrated:
T
f f(T)e ERT 4T = f,(T) e 57T )
[4]
By derivation of egn (5) with respect to 7, one obtains:
. E
D=7+ RTZ J(T) ©6)

Eqn (6) could be used in two directions:
(A) For a given programme of heating (this means f(7) is known), we search f,.
(A1) For f(T)) = const. (or even f(T)) = 1), eqn (6) becomes:
, E
fi+ RT2 Si=1 ©")

By introducing a new function f5:

HL=T1, 0
substituting it in eqn (6), and then trying solutions:
a
=2 a,T* 3
k=0

the identification with respect to the powers of 7, leads to:

T
-z 21 31 31
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where x = EJRT; which is the asymptotic expansion®.
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(B) By chosing a certain function f(T), we find the corresponding programme
of heating. Integration of this heating programme leads to eqn (3). E.g.:
(B1) For f, = R/bE, where b = a parameter, eqn (6) becomes:
AT = 1bT* = 1/B
and with eqn (3):
dT;T® = bdt
1/T=a — bt

Thus we recover the hyperbolic heating programme!.

(B2) For
RT?

h=%E

eqn (6) becomes:

—s _ _ 2RT 1

B -—f(T)—--BE—'*‘-b- &)

Introducing also eqn. (3), by integration, one gets:
RT?

where b, = 1/b.
This heating programme is a parabolic one and it solves exactly the temperature
integral. Eqn (17) becomes:

( [1 —-Q —a)""] /
F(a) - ’. l - n B#1 L= _Z£ TZ e—E,-’RT (lo)

\ bE
-l —9l., )

?

Eqn (10) allows to determine kinetic parameters, according to an integral
method, similar to the Coats-Redfern® one.

The only difficulty that arises is due to the appearance of the activation energy
in eqn (9). For its determination, an experimental procedure is used. It starts from
a value E,, supposed to be approximately equal to E. From eqn (10), a new value is
determined, E,, closer to £. The procedure is repeated until the difference between
the calculated value and that introduced in egn (9) is of the same magnitude as the
Iimit of ihe experimental errors.

(BB) FO!’fl(:-") i TcE&’RT' eqn (6) becomas:
1B = f(T) = e *7 _ 7 Eo_ gairr | 1+ E _ eamr
RT? 2

As E ~ E,, and T is large encugh:
ST = FoRT
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It turns out that § = e 5%7 namely an exponential heating programme.

(B4) The suggested method above is general, the choice of the function f,(7)
being just a matter of the experimental possibilities to realise the programme of
heating, defined by the function f.

EXPERIMENTAL

The reaction of dehydration of the calcium monohydrate oxalate has been
studied. Since a parabolic time-temperature programmer. was not available we used
the endothermal effect of the reaction, which gives deviation from lineanty. By
successive trials, we succeeded in geiting the desired programme. The obtained data
were treated on 2 computer, by means of a programme presented in another work”’.
The results obtained (n = 0.95, E = 24 kcal mol™*, Z = 1.6 x 10° sec™!) show a
good agreement with those found in literature®- 6.

CONCLUSIONS

A non-linear heating programme (parabolic) has been suggested, which allows
to solve exactly the temperature integral. On its basis, a new method to determine
kinetic parameters under non-linear conditions has been suggested.

The kinetic parameters obtained by this method for the dehydration of Ca
(COO0), - H,0, are in good agreement with those obtained by means of other methods.
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